Comparative overview of indoor air quality in Antwerp, Belgium.

Environ Int. 2007 Aug;33(6):789-97
Stranger M, Potgieter-Vermaak SS, Van Grieken R.
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Higher Institute for Product Development, Design Sciences, University College of Antwerp, Ambtmanstraat 1, B-2000 Antwerpen, Belgium.

This comprehensive study, a first in Belgium, aimed at characterizing the residential and school indoor air quality of subgroups that took part in the European Community Respiratory Health Survey and the International Study of Asthma and Allergy in Childhood [Masoli M, Fabian D, Holt S, Beasley R. Global Burden of Asthma, Medical Research Institute of New Zealand, University of Southampton; 2004.] questionnaire-based asthma and related illnesses studies.

The principal aim was to perform a base-line study to assess the indoor air quality in Antwerp in terms of various gaseous and particulate pollutants. Secondly, it aimed to establish correlations between these pollutants investigated, the pollutant levels in the indoor and outdoor micro-environments, findings of the previous questionnaire-based studies and an epidemiological study which ran in conjunction with this study. Lastly, these results were compared and evaluated with current indoor and ambient guidelines in various countries.

This paper presents selected results on PM1, PM2.5 and PM10 mass concentrations and elemental C estimates as black smoke, as well as gaseous NO(2), SO(2), O(3) and BTEX concentrations of 18 residences and 27 schools. These are related to current guidelines of Flanders, Germany, Norway, China and Canada and evaluated with reference to selected similar studies. It was found that indoor sources such as tobacco smoking and carpets, the latter causing re-suspension of dust, are responsible for elevated indoor respirable particulate matter and place school children and residents at risk.

Both PM2.5 and PM10 equalled or exceeded the current guidelines adopted by Flanders, noting that 12-h and 24-h PM2.5 were compared with an annual limit value. Indoor and ambient NO(2) concentrations in the school campaign were higher than the annual EU ambient norm. The other studied pollutant levels were below the current guidelines.




copyright |